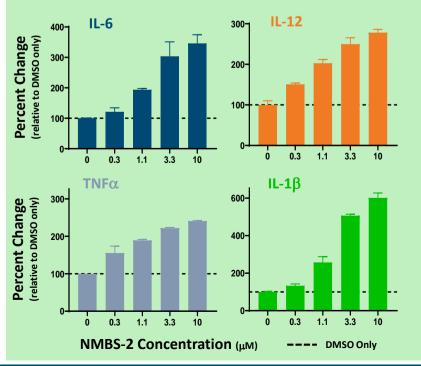
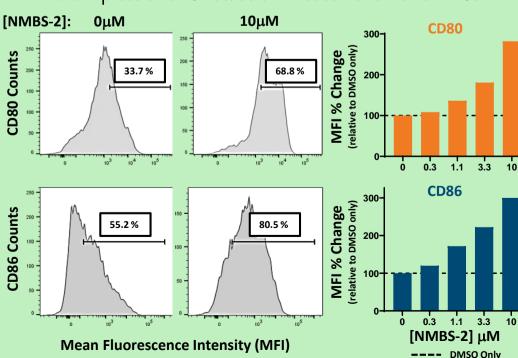

A Highly Selective and Potent HPK1 Inhibitor Enhances Immune Cell Activation and Induces Robust Tumor Growth Inhibition in a Syngeneic Tumor Model

David Ciccone¹, Vad Lazari², Ian Linney², Michael Briggs², Samantha Carreiro¹, Ben Whittaker², Stuart Ward², Grant Wishart², Eric Feyfant³, Jeremy Greenwood³, Abba Leffler³, Alexandre Cote³, Steven Albanese³, Ian Waddell², Chris Hill², Christine Loh¹, Peter Tummino¹, Joshua McElwee¹, Alan Collis¹, and Neelu Kaila¹ ¹Nimbus Therapeutics, Cambridge, MA, USA; ²Charles River Laboratories, Chesterford Research Park, United Kingdom; ³Schrödinger, New York, NY, USA

BACKGROUND

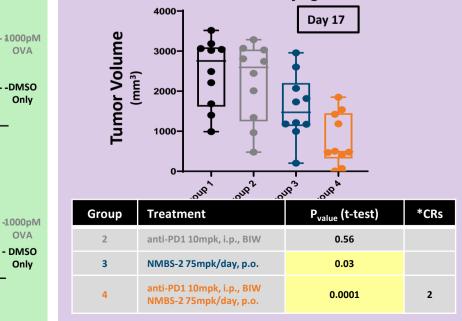

HPK1, a member of the MAP4K family of protein serine/threonine kinases, is involved in regulating signal transduction cascades in cells of hematopoietic origin. Recent data from HPK1 knockout animals and kinase-inactive knock-in animals underscores the role of HPK1 in negatively regulating lymphocyte activation. This negative-feedback role of HPK1 downstream of lymphocyte activation and function, combined with its restricted expression in cells of hematopoietic origin, make it a compelling drug target for enhancing anti-tumor immunity.



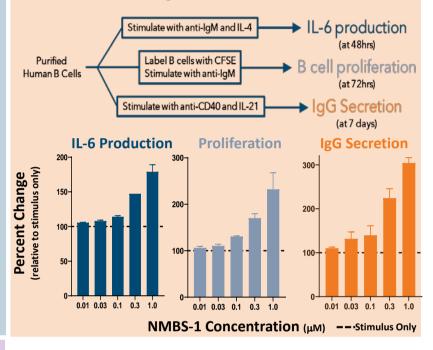
Dendritic Cells

HPK1 Inhibition Enhances Cytokine Production From LPS-stimulated Mouse Bone Marrow DCs

HPK1 Inhibition Increases the Number of CD80/86⁺ Cells and Enhances the Expression of CD80/86 on Mouse Bone Marrow DCs



HPK1 Inhibition Enhances Ag-Specific OTI CD8⁺ T Cell Activation in Mouse MLR **Proliferation** [NMBS-2] μM


Syngeneic Studies

HPK1 Inhibition Induces Robust Tumor Growth Inhibition as a Single Agent and in Combination with anti-PD1 in the CT-26 Syngeneic Model

B Cells

HPK1 Inhibition Enhances IL-6 Production, Proliferation, and IgG Secretion from Human B Cells

CONCLUSIONS AND FUTURE STEPS

We show here that potent, highly selective small molecule HPK1 inhibitors mediate activation of several immune cell types, including T, B and dendritic cells. Immune activation upon HPK1 inhibition is observed even in immune-suppressed environments (PGE₂, Treg, and T cell exhaustion). This enhancement of immune responses ex vivo translates into effective tumor growth inhibition in vivo, as a single agent and in combination with anti-PD1 in syngeneic models. Further evaluation of these selective inhibitors in additional immune cellbased assays will continue to build upon our mechanistic understanding of HPK1 inhibition as a novel immunomodulatory approach for anti-tumor immunity.

ACKNOWLEDGEMENTS

We thank the Schrödinger, CRL and Nimbus HPK1 design teams for their key contributions to this project.