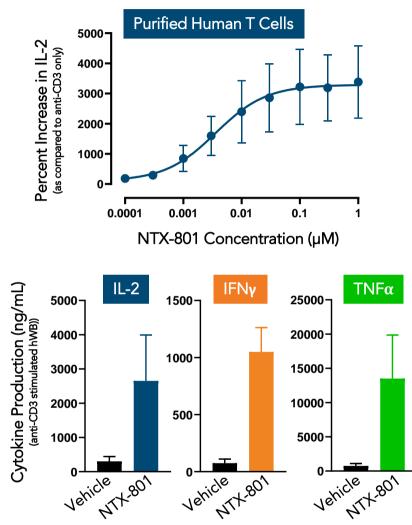
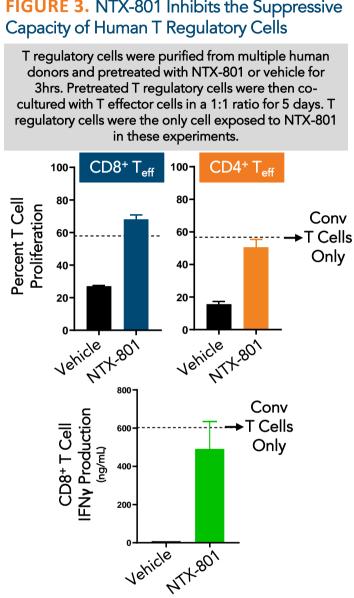
Discovery of NTX-801, a Potent Cbl-b Inhibitor with Anti-tumor Activity in Syngeneic Models

David Ciccone¹, Fred Csibi¹, Christopher Plescia¹, David L. Laughton², Beth Browning¹, Suzanne L. Jacques¹, Angela V. Toms¹, Samantha Garside², Simon D'Archivio², Eric Feyfant³, Fiona McRobb³, Salma Rafi³, Yan Zhang³, Katarzyna Kopycka², Stuart Thomson², Allan M. Jordan², Tom Baker², Peter Tummino¹, Scott Edmondson¹, Christine Loh¹, Xiaohua Zhu¹, and Silvana Leit¹

¹Nimbus Therapeutics, Cambridge, MA, USA; ²Sygnature Discovery, BioCity, Nottingham, United Kingdom; ³Schrödinger, New York, NY, USA


BACKGROUND

Casitas B-lineage lymphoma b (Cbl-b), a RING finger E3 ligase and a member of a highly conserved family of Cbl proteins, catalyzes the ubiquitination of substrate proteins to regulate multiple signaling events in a variety of cell types, including immune cells. In T cells, Cbl-b negatively regulates adaptive immune system signaling by establishing the threshold for the activation of antigen receptors. Additionally, Cbl-b regulates the function of other immune cell types, including NK cells, dendritic cells and monocytes. Cbl-b deficient T cells no longer require a costimulatory signal to be fully activated. Cbl-b KO mice spontaneously reject tumors via an enhanced immune response. Taken together, these findings point to Cbl-b inhibitors as having the potential to be highly efficacious immuno-oncology agents.


METHODS & RESULTS

A structure-based drug design approach was used to identify potent inhibitors of Cbl-b. The Cbl-b inhibitor NTX-801 potently binds to Cbl-b, preventing Cbl-b phosphorylation and activation with biochemical and cellular $IC_{50} < 5$ nM. NTX-801 can enhance both T and NK cell activation, reinvigorate exhausted T cells, and inhibit the suppressive capacity of T regulatory cells. In vivo, Cbl-b inhibition enhanced cytokine production and increased T cell activation markers after a single dose of NTX-801. Furthermore, NTX-801 is shown to induce robust and statistically significant tumor growth inhibition in the CT-26 syngeneic model with increased T cell and NK cell signatures observed within the tumor. NTX-801 in combination with anti-PD1 resulted in robust antitumor activity, increased survival, and several complete responses, as defined by no measurable tumor.

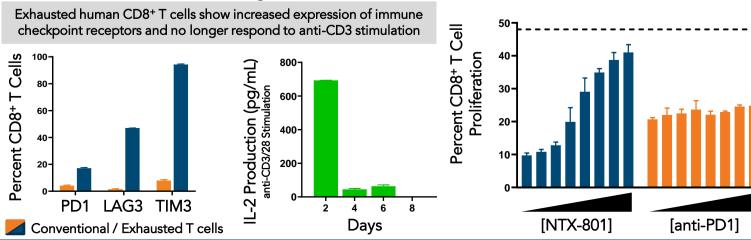

FIGURE 1. NTX-801 Enhances Cytokine Expression from Purified Human T Cells and Human Whole Blood Stimulated with anti-CD3/28

FIGURE 3. NTX-801 Inhibits the Suppressive Capacity of Human T Regulatory Cells

FIGURE 2. Cbl-b Inhibition Reinvigorates In Vitro Exhausted Human CD8⁺ T cells

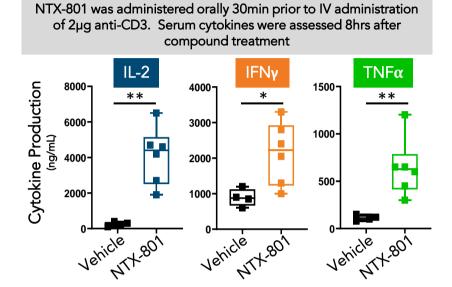


FIGURE 4. Cbl-b Inhibition Enhances Serum Cvtokine

Production in an In Vivo anti-CD3 PD Model

FIGURE 5. NTX-801 Increases Immune Cel Transcriptional Signatures in CT-26 Treated Tumors

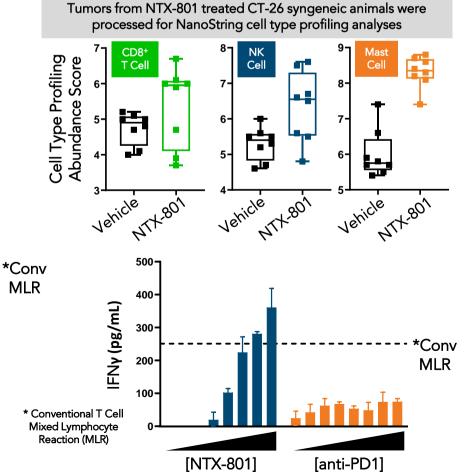
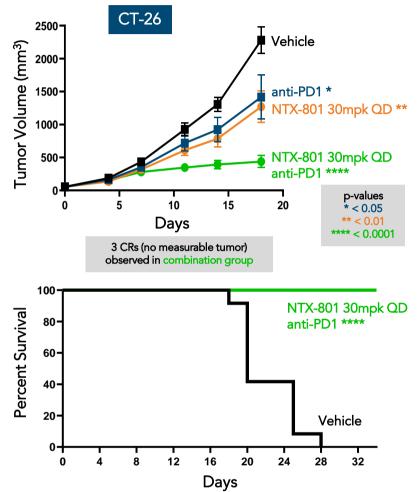



FIGURE 6. NTX-801 Induces Robust Tumor Growth Inhibition in Combination with anti-PD1 in the CT-26 Syngeneic Tumor Model

CONCLUSIONS AND FUTURE DIRECTIONS

We show here that a potent small molecule Cbl-b inhibitor demonstrates strong immune cell activation and robust anti-tumor activity in a mouse syngeneic tumor model, as a single agent and in combination with anti-PD1. These data phenocopy the broad immune activation and tumor rejection data observed in Cbl-b KO mice.¹

Further evaluation of these potent inhibitors in additional in vivo studies will continue to build upon our mechanistic understanding of Cbl-b inhibition as a novel immunomodulatory approach for anti-tumor immunity.

¹Loeser, S. et al., JEM 2007 v204(4): 879-91