## A Highly Selective and Potent HPK1 Inhibitor Enhances Immune Cell Activation and Induces Robust Tumor Growth Inhibition in a Syngeneic Tumor Model

David Ciccone<sup>1</sup>, Jennifer Rocnik<sup>1</sup>, Vad Lazari<sup>2</sup>, Ian Linney<sup>2</sup>, Michael Briggs<sup>2</sup>, Samantha Carreiro<sup>1</sup>, Ian Waddell<sup>2</sup>, Chris Hill<sup>2</sup>, Christine Loh<sup>1</sup>, Peter Tummino<sup>1</sup>, Alan Collis<sup>1</sup>, and Neelu Kaila<sup>1</sup> <sup>1</sup>Nimbus Therapeutics, Cambridge, MA, USA; <sup>2</sup>Charles River Laboratories, Chesterford Research Park, United Kingdom

### BACKGROUND

HPK1, a member of the MAP4K family of protein serine/ threonine kinases, is involved in regulating signal transduction cascades in cells of hematopoietic origin. from HPK1 knockout animals and Recent data kinase-inactive knock-in animals underscores the role of HPK1 in negatively regulating lymphocyte activation. This negative-feedback role of HPK1 downstream of lymphocyte activation and function, combined with its restricted expression in cells of hematopoietic origin, make it a compelling drug target for enhancing anti-tumor immunity.



## **METHODS**

A structure-based drug design approach was used to identify potent and selective inhibitors of HPK1. Biochemical assays, as well as primary human and mouse immune cell-based activation assays, were utilized for multiple iterations of structure-activity relationship (SAR) In vivo efficacy, target engagement and studies. pharmacodynamic data were generated using murine syngeneic tumor models.

## FIGURE 1. Potency, Selectivity, and Drug-like Properties of HPK1 Inhibitor NMBS-1



## FIGURE 2. HPK1 Inhibition Enhances IL-2 Production From Stimulated Human T Cells







# FIGURE 4. HPK1 Inhibition Enhances IL-6 Production,





## FIGURE 6. NMBS-1 Induces Robust Tumor Growth Inhibition as a Single Agent and in Combination with anti-CTLA4



| Treatment Group                   | P <sub>value</sub> (t-test) | *CRs |
|-----------------------------------|-----------------------------|------|
| Vehicle                           |                             |      |
| anti-CTLA4                        | 0.003                       | 2    |
| NMBS-1 75mpk, QD                  | 0.002                       | 2    |
| NMBS-1 15mpk, BID                 | 0.038                       |      |
| anti-CTLA4 +<br>NMBS-1 15mpk, BID | 0.0002                      | 4    |

| Treatment Group  | P <sub>value</sub> (t-test) | *CRs |
|------------------|-----------------------------|------|
| Vehicle          |                             |      |
| NMBS-1 75mpk, QD | < 0.0001                    |      |

<sup>\*</sup>CRs, Complete Responses; No mea

## **CONCLUSION AND FUTURE STEPS**

An oral, potent, highly selective small molecule HPK1 inhibitor demonstrates in vivo tumor growth inhibition as both monotherapy and in combination with anti-CTLA4 in the CT-26 model. Effects shown are consistent with in vivo activity demonstrated in published genetic knock-out / kinase dead knock-in studies<sup>1,2</sup>. Further evaluation of this selective inhibitor in other *in vivo* models will continue to elucidate the value of HPK1 inhibition as a novel immunomodulatory approach for anti-tumor immunity.

## ACKNOWLEDGEMENTS

We thank the Schrödinger, CRL and Nimbus HPK1 design teams for their key contributions to the project.

## REFERENCES

- <sup>1.</sup> Hernandez et al., 2018, Cell Reports 25, 80–94.
- <sup>2.</sup> Liu et al., 2019, <u>PLOS One</u> 14 (3), 1-18